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Introduction to the Distribution of Relaxation Times

Mark Bouman

1. Introduction

The distribution of relaxation times (DRT) is a powerful tool for visualizing electrochemical
reactions occurring at different rates within an electrochemical system. This is often desired by the
engineer or researcher to identify the main sources of performance loss within the system. DRT
transforms impedance measurements (often achieved through the use of EIS) into a distribution of
resistances at the time constants (relaxation times) of the system. For example, in an electrochemical cell
where two dominant reactions are occurring simultaneously, applying the DRT technique will separate the
time constant and resistance of each reaction. The shape of a Nyquist or Bode plot is often used to provide
a general guidance on the minimum number of processes involved. However, this technique is limited in
its ability to distinguish between reactions occurring at similar rates. The DRT technique is better for
identifying the exact values of time constants, and distinguishing different processes with time constants
which are much closer to each other [1].

In equivalent circuit modeling, one must choose an electrical circuit which describes the system
physics, and also provide a reasonable initial guess for the values of the circuit elements to achieve a good
fit to the data.This can be a complex process that requires comprehensive understanding of the physical
process models and how these processes show up in the system impedance. The advantage of DRT over
equivalent circuit modeling is that it requires no initial assumptions about the electrochemical system
while revealing useful information about the electrochemical processes in the system [2]. The processes
revealed by a DRT can inform the choice of circuit and initial guesses of the parameters for the equivalent
circuit model, so calculating the DRT can be a useful first step in equivalent circuit modeling. If good
choices can be made, the parameters of the equivalent circuit model can provide more information about
physical processes in the electrochemical system than the DRT.

In a DRT, the basic circuit element is the RC element, which is a resistor and capacitor in parallel.
For a resistor with resistance R and a capacitor with capacitance C, the impedance Z(w) of the RC circuit
is [3]

Z(w) =

R
1+jwRC

The variable w is the angular frequency, which relates to frequency in hertz by w = 2xf. The
impedance can be separated into real and imaginary components:

Z(w) = Z'(w) — jZ"(w)

R u)RZC
Z'(w) = —-— and Z"(w) = —£°
(@) 1+(wRC)’ an (@) 1+(wRC)’
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Figure 1 shows the Nyquist plot of an RC element’s impedance. At low frequency, the capacitor

blocks the current, and the impedance is a simple resistance with value R. At high frequency, the capacitor

shorts the resistor, and the impedance approaches 0. In between, the capacitor causes a phase shift
between the voltage and current, so the imaginary part of the impedance is nonzero. The imaginary

impedance achieves its maximum at w = 1 / (RC). The constant RC is called the time constant 7 of the RC

element.
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Figure 1: (a) Nyquist plot and (b) Analytic DRT of an RC element. R =2 Q and C = 0.01 F
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Figure 2: Nyquist plots for a circuit with two time constants. R, = 10Q, R, =10Q, C, =0.001 F.
a)C,=0.1Fb)C,=0.01 Fc) C,=0.005F d) C,=0.002 F



[ puLsenics

Since the RC element has only one time constant (visible on the Nyquist plot as a single semicircle),
the DRT is concentrated at a single point, 7. This is a Dirac-d distribution, centered at ¢ and scaled by a
factor of R. When numerically calculating the DRT, the J distribution must be approximated as a single,
narrow peak (see Section 3).

More complex systems will have multiple time constants. When these time constants are spread out,
they can be identified by semi-circles on a Nyquist plot. However, each time constant affects the
measured impedance at a range of frequencies around it, so time constants which are close can be hard to
distinguish using Nyquist plots. For example, Figure 2 shows the Nyquist plot of two RC elements in
series, with time constants getting closer to each other. When the time constants are far apart, as in Figure
2(a), two semicircles are clear, but as the time constants approach each other, the semicircles merge. In
this case, the DRT can be used to distinguish between the time constants.

In the following section, the mathematical definition and properties of the distribution of relaxation
times are explored. The DRT for several common circuit elements will be included. Section 3 explains the
methods for calculating the DRT and how they impact the end result. Section 3 will also explain how to
interpret the DRT results.

2. Analytic Distribution of Relaxation Times

As stated in the introduction, the fundamental circuit element for DRT is the RC element, which is a
resistor and capacitor in parallel. A Voigt circuit consists of A RC elements in series with a resistor R__

(Figure 3). At the limit of high frequencies, the capacitors allow the current through, so the RC elements
have 0 impedance. Therefore R__ is the resistance at infinite frequency. The Voigt circuit is a very general

circuit model for fitting most impedance spectra. Theoretical limitations of the Voigt circuit are described
in [4]. Defining the time constant 7; = R,C,, the impedance of this circuit is

M

R
Z(w) = R_+ '21 T+t
i= i

Instead of restricting the circuit to a discrete set of time constants, the theoretical DRT model uses a
continuous distribution of the time constants, replacing the sum with an integral:

Z(w) =R_+ f—'ﬂldr
0

1+jwt

The distribution g(7) (in Q - s) describes the system’s resistances at any time constant. Since the
time constants are typically considered on a logarithmic scale, the integral will be written in terms of In 7.
This is accomplished by defining G(z) = 7 g(7) [5]:

Z(w) =R_+ f%dlnr (1)
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Figure 3: Voigt Circuit

This equation defines the distribution of relaxation times G(t), which has units of Q. For circuits with
a single time constant (like the RC element in Figure 1), G(z) is concentrated at a single point, which is
the J distribution. The DRT for some other common circuit elements is shown in Section 2.2.

Using the relationship f= 1/(257), G can be plotted against frequencies, which is useful for
comparing the DRT and frequency-domain impedance plots. This will be done for the rest of the paper.

2.1 Properties

Given the DRT G of an impedance spectrum Z, the limits of the impedance for high and low
frequencies can be determined from Equation (1):

Z(0) =R_+ Ofo G(t)dInt 2)

—Q0

Z() = R_ 3)

The total area under the distribution is the difference between the high and low frequency resistance.
As long as this is finite, the impedance will approach a real value at low frequencies, which is the DC
resistance. Some impedance spectra will not approach a real value at low or high frequencies. In these
cases, some extensions to the DRT model are needed, as described in Section 3.2.

Equation (1) also shows that the relationship between Z and G is linear. This means that, for given
impedance spectra Z, and Z, with their respective DRTs G, and G,, and constants a and b, the DRT of the
combined impedance aZ, + bZ, is aG, + bG,. It follows that a DRT can be interpreted as a collection of
basic circuit elements in series. Separate peaks can be viewed as different circuits and analyzed
individually. Solving linear systems gives unique solutions and does not require an initial guess. So DRT
has an advantage over non-linear equivalent circuit modeling, which will not find the most optimal
solution if the initial guesses are too far from their actual values.

2.2 DRT of Common Circuit Elements

To analyze DRT results from actual systems it is helpful to understand the DRTs of several common
circuit elements.

The constant phase element (CPE), often used in equivalent circuit modeling, is a generalized version
of a capacitor. These elements can arise from non-idealities in real systems, such as edge effects and
uneven surface distributions of impedances [6].
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The impedance of a CPE is given by

_ 1
ZCPE((n) =0 where 0 <a <1.

P
w

The name comes from its constant phase shift of -a-90°. If @ = 1, the CPE is simply an ideal
capacitor. A CPE in parallel with a resistor is called an RQ element (or ZARC element), and has
impedance

R 1/a
ZRQ(w) = —— where T, = (RQ) 4)

1+ (jwro)

When a =1 and the CPE is an ideal capacitor, then the RQ element is an RC element, with DRT
shown in Figure 1. For a < 1, the DRT is given by [7]

Goo® = (50— T
cosh((x In (TO) ) + cos(am)

Figure 4 shows the Nyquist and DRT plots for an RQ element. The cosh function has its minimum at
0, therefore G(z) has a maximum when In(z,/7) = 0 which occurs at 7 = 7,,. The maximum is given by

2m J 1+ cos(am)

Gl = (e

As a approaches 1, sin(ar) can be approximated by -ar and cos(aur) by (a)*/ 2 - 1. With these
approximations,
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Figure 4: (a) Nyquist plot and (b) DRT of an RQ element. R = 1 Q and Q = 0.1 s*-'. On the Nyquist, the
plot approaches the real axis at an angle of o.-90°



[ puLsenics

Therefore, the height of the peak of the DRT will increase to infinity as « approaches 1. For 7 # 7,
the cosh function will increase towards infinity as o approaches 1, so the distribution approaches 0. From
Equation (4), the limits of the impedance at high and low frequency are Z(0) = R and Z(«) =0,
respectively. Therefore, with Equations (2) and (3), the total area under the distribution is constant, at R.
So the limit of the DRT for an RQ element as « approaches 1 is a ¢ distribution centered at 7, and scaled
by a factor R, which is exactly the DRT for an RC element (Figure 1).

An RL element is a resistor R in parallel with an inductor L. The impedance is given by

— JwtR — L
ZRL(u)) Tt jor where T =

The RL element can be written as an RC element with the same time constant but a negative resistor,
in series with another resistor [8]:

_ _JwtR _ R+jotR—R __ —R
ZRL((D)_ 1+4jot 1+ jwt =R+ 1+ ot

Like the RC circuit, the RL circuit has only a single time constant and the DRT of an RL circuit is a &
distribution (Figure 5). But, for the RL circuit, the distribution is negative. Therefore, negative peaks in a
DRT result indicate inductance in a system. For the RL circuit, R, = Z() = R, and Z(0) = 0, so the total
area under the distribution is -R.

Diffusion elements like the Gerischer and Warburg elements have more complex DRTs, which are
also more difficult to calculate numerically. The Gerischer element’s impedance is given by the equation

R

q/1+ju)r0

Z,(w) =
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Figure 5: (a) Nyquist plot and (b) DRT of an RL element. R =2 Qand L = 0.1 H
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The DRT for the Gerischer element is [7]

R T
GO ="\

For 7 > 1,, G4(7) = 0. The infinite discontinuity at 7 = 7, makes the DRT of a Gerischer impedance
harder to compute numerically.

The impedance of a finite length Warburg element looks similar to the Gerischer. On a Nyquist plot

(Figure 6), both have a 45° angle at high frequencies, but the Warburg element will go above the 45° line
as the frequency decreases, before the imaginary impedance drops to 0.

ZW(oo) = \/j%otanh(\/jmi‘ro)

The DRT for the finite length Warburg element is a series of ¢ distributions, at locations T, [7]:

T
—— =
= T k=L 23 (5)

The scale of each ¢ distribution is 2R(7,/7,). When numerically computing the DRT of a finite length
Warburg, often only the first & distribution (at T = 7, / (;t/4)?) is visible, and the rest of the distribution is
lumped together in a single peak.

While the complexity of the DRT of diffusion elements makes them harder to identify, diffusion is

more easily identified by the 45° angle on the Nyquist plot (Figure 6). See Section 3.4 for more details on
numerical calculations for diffusion elements.
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3. Numerical Calculation

Recall the definition of DRT in Equation (1):
_ < G(™
Z(w) =R_+ _foo Trjor dint

The impedance Z is measured at a set of angular frequencies w,, for 1 <i < M. A set of N time
constants at which to calculate the DRT must be chosen. Let 7, be the time constants, for 1 <k < N. The
impedance at the angular frequency w;, is affected by the resistance at the time constants around 1/w;. To
account for the entire frequency range, the smallest time constant 7, should be at most 1/w,, (for example,
0.1/w,,), where w,, is the largest angular frequency. Similarly, the largest time constant 7 should be
chosen to be at least 1/w,, (for example, 10/w,) where w, is the smallest angular frequency [2]. While the
system may have important time constants outside of this range, their effects would likely not be
detectable on the measured impedance. The other time constants are distributed logarithmically in
between 7, and 7. A larger number of time constants N can produce a higher precision DRT, but the
precision is also limited by the number of measured frequencies. In general, N = 5M is a good choice.

By splitting the impedance Z into real and imaginary parts and approximating the integral by a sum,
Equation (1) becomes a system of equations which is linear in G, and R,

N
G
Re(Z) =R + ¥ —=*—Alnt for0<i<M
L 5] 1 2
k=1 +(mirk)
N —0TG, .
Im(Z) = )Y —Alnt for0<i<M

. k=1 1+(mirk)

The term A In 7 is the difference between the natural logarithm of adjacent time constants, which is
constant if 7, are logarithmically spaced. The system can be written as Z = 4X where Z is a vector with
length 2M containing the real and imaginary values for Z, X is a vector length N + 1 containing the values
of G, and R,, and 4 is a matrix of size (2M) x (N + 1) which contains the above equations. In this
equation, AX is the impedance calculated from the DRT, which should be equal to the measured
impedance Z.

In practice, Z will not be exactly equal to AX because of errors in measurement and the discrete
approximation of Z and G. Instead, the goal is to find X which minimizes ||[Z — AX ||2, the distance

between the measured impedance and the impedance calculated from the DRT. The subscript 2 indicates

the £? norm, also called the Euclidean norm, defined for a vector W = (w, ..., wy) by:
Ny
Wi, =~/ % w (©6)

i=1
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Diftferences between the DRT fit AX and the original impedance Z mean that the measured impedance
cannot be modeled by a Voigt circuit. This could indicate that the DRT model needs to be extended
(Section 3.2), or that there is a problem with the measurements.

In the absence of inductive effects, the DRT will be nonnegative. A neater DRT result can sometimes
be obtained by constraining the solution to nonnegative values.

3.1 Regularization

If N+ 1 is greater than 2M (for example, if N = 5M as suggested above), then there will be more free
parameters than constraints, and the above least squares problem is underdetermined. This means there

will be many values of X which minimize ||Z — AX ||2. Choosing a smaller value of N means that

precision is lost in determining the location of the time constants. Instead, the problem can be regularized.
While there are an infinite number of possible values for X, most of them are extremely chaotic and
therefore provide very little information. The problem can be further constrained by assuming some
regularity about X.

Elastic net regularization [5] changes the function to be minimized by adding the £' (taxicab) and (?
(Euclidean) norms of X:

2 2
1Z = AXI2 + A JIXI, + 21X

For a vector W= (w,, ..., wy), the £' norm is defined by

N
Wi, =% lw| ©)
i=1

Because of the power of 2 in its definition (6), the £* norm places a large penalty on high values of
the DRT, bringing them down and creating a smoother solution. The £' norm has a higher penalty on low
values of the DRT than the {? norm, so it tends to bring low values of the DRT down to 0 and groups wide
distributions into narrow peaks. The values A, and A, are called the regularization parameters. Often, it is
more convenient to express the regularization parameters in terms of the total weighta = A .t A ) and

relative weight of the €' norm r = A L /(A . T A 2). The parameter a should be positive and 0 <r < 1.

Figure 7 illustrates the effects of different parameters for elastic net regularization. It is useful to attempt a
range of values to see which one produces the best results. There are open source libraries for solving
elastic net problems, including scikit-learn in Python [9].

The special case r = 0 is called ridge regression (which is also a special case of Tikhonov
regularization), while r = 1 is called lasso regression. Ridge regression has a closed form solution, but
for r > 0, iterative methods are required to find a solution which can increase computation time.
Formally, for any value of , the minimization function is convex, which simplifies solving the problem
since the only local minimum is the global minimum.
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Figure 7: Effect of regularization. DRT of an RC element (a) and RQ element (b) with different values of
the L1 ratio r, and weight o = 0.001. DRT of (a) one RC element and (b) two RC elements with close time
constants with different regularization weights o, and L1 ratior = 0.5

Figure 7 shows the effects of different regularization parameters. A higher value of » (L1 ratio) tends
to produce narrower distributions, which is better for the ¢ distribution of Figure 7(a), but bad for the tails
of the distribution in Figure 7(b). A higher weight tends to flatten peaks (Figure 7(c)) and merge them
together (Figure 7(d)), but it also does a better job of eliminating noise. Figure 7 also shows
“pseudo-peaks” when bad parameters are chosen. If regularization distorts the distribution too much, the
pseudo-peaks often arise to provide a correction. They can also come from measurement noise. Higher
regularization tends to flatten the pseudo-peaks.

Two common heuristic methods for choosing a regularization weight are the L-curve method [10]
and generalized cross validation (GCV) [11].The general idea behind both of these methods is to balance
the error on DRT calculation with the strength of the regularization. If the impedance data is very noisy,
greater regularization is needed to suppress pseudo-peaks resulting from the noise. These methods cannot
factor in background knowledge of the system, expected results, or which models are easier to interpret,
so manual selection of parameters by trial and error can sometimes produce better results.

A brief overview of generalized cross validation will be presented here, while the full details can be

found in [11]. While it only works for ridge regression, it can inform the selection of the value of a for the
elastic net. The matrix 4 is written in terms of its singular value decomposition (SVD)

10
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A=Usv

In the SVD, U and V are orthonormal matrices with columns called the left singular vectors for U and
right singular vectors for V. The diagonal matrix 2 has values o which describe the weight of the

singular vectors. Ridge regression filters out the singular vectors according to filter factors

2 L .
When o « c,, the filter factor has a value near 1, and the corresponding singular vector remains

. 2 . .
important, but when a > o, the filter factor has a value near 0, and the singular vector is ignored. The

GCV chooses o to minimize the function

l1Z—Ax*|:
GCV(a) = 7

The numerator is the error on the solution X" found using « as the regularization parameter. In the
denominator, 7 is a function which quantifies the amount of regularization, defined by

T@=m- % f,
k=1

In this equation, m is the length of Z (which is 2M in the DRT example). A high value of 7' means the
filter factors are small, so regularization is high. The minimum of the GCV will balance the numerator
(accuracy of the DRT) with the denominator (amount of regularization). While this method requires
calculating the DRT multiple times, the SVD only needs to be calculated once and greatly improves the
DRT calculation time.

3.2 Extending the DRT Model

While the Voigt circuit which forms the basis of DRT is a very general circuit, it is unable to fit some
common circuit elements, like series inductors and series capacitors. In theory, it can fit a semi-infinite
Warburg element, but it requires an infinite range of time constants. In order to fit these elements, they
can be added in series to the DRT model [2]. The updated DRT equation becomes

[o9]

_ . 1 W, G(x)
Z(w) =R_+ ]ooLO + ol + _\/jTo + J Thjor dint

The second term is the impedance of an inductor, the third term is the impedance of a capacitor, and
the fourth term is the impedance of a semi-infinite Warburg element. Choosing which of these terms to
include can be decided by looking at the Nyquist plot, as shown in the following examples.

11
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Consider Figure 8, where the impedance of an inductor in series with an RQ element is shown. There
is one clearly visible time constant for the RQ element. Rather than approaching 0, Z"' goes towards
negative infinity at high frequencies because of the inductor. Including the L, term in the DRT greatly
improves the quality of the fit. It also makes the DRT result more readable by eliminating the large
pseudo-peaks which attempt to fit the inductor.

In Figure 9, the inductor is replaced by a capacitor. This time, Z'" goes towards positive infinity at
low frequencies. The DRT attempts to fit this with a large positive peak at low frequencies. Adding the C,
term to the DRT model eliminates the peak and produces a much better fit.

Figure 10 replaces the capacitor with a semi-infinite Warburg element. On the Nyquist plot, the
Warburg makes the impedance increase at a 45° angle at low frequencies. The Warburg tends to produce
multiple peaks at low frequencies, which can obscure other system time constants. Adding the W;term
both increases the quality of the fit, and makes the system’s time constants more visible.

a) b)
1.00
—— With Lg term
0.75 + 101 — without Lo term
0.50 0.5

e Impedance
—— DRT Fit, with Lo term
—— DRT Fit, without Lo term

-0.5 0.0 0.5 1.0 15 2.0 2.5 3.0 102 10! 100 10! 102 103 104
Z'(q) f(Hz)

Figure 8. (a) Nyquist plot for an inductor in series with an RQ element. Adding the L, term greatly
improves the fit. (b) DRT with and without L, term. The L, term eliminates large pseudo-peaks.
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Figure 9. (a) Nyquist plot for a capacitor in series with an RQ element. Adding the C, term greatly
improves the fit. (b) DRT with and without C, term. The C, term eliminates large pseudo-peaks.

12
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Figure 10. (a) Nyquist plot for a semi-infinite Warburg in series with an RQ element. Adding the W, term
greatly improves the fit. (b) DRT with and without W, term. The W, term eliminates large pseudo-peaks.

To determine which of the terms should be included in the DRT model, look at the high and low
frequency limits of the Nyquist plots. If Z'" goes towards negative infinity at high frequencies, an inductor
should be added in series to the DRT model. If Z" goes towards positive infinity at low frequencies, a
capacitor should be added. If the plot forms a 45° angle at low frequencies, add a semi-infinite Warburg
element. This will improve the quality of the fit and make the system time constants more visible. The
values of L, Cy, and W, found from the DRT calculation can also be useful in choosing initial conditions
for an equivalent circuit.

3.3 Interpreting DRT Results

Consider the example in Figure 11. The impedance is of an RC element and RL element in series.
The RC circuit has a much larger resistance and a smaller time constant. At low frequencies, the
inductor’s impedance is near 0, while the capacitor has a large impedance. Therefore, the current must
flow through the resistor in the RC circuit (R1), but will pass through the inductor instead of the RL
element’s resistor (R2). As the frequency increases, the inductor’s impedance increases, so that the current
must flow through both resistors. For very high frequencies, the capacitor allows current to flow, and
therefore the current can avoid R1.

a) b)

w=1/Tc
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G(Q)

=

0 .
Vi
0.0 0.5 1.0 15 2.0 25 102 10° 102 10¢ 106
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Figure 11. (a) Nyquist and (b) DRT of an RC element and RL element in series.
R=2Q, C=10"ER,=2Q,L=10"H

13
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In this example, the time constants are greatly separated, so it is easy to read this information off the
Nyquist plot. A DRT can provide the same information, even if the time constants are closer together. The
properties in Section 2.1 will be applied here.

Because of the linearity of the DRT, the two peaks of the DRT can be considered separately. At high
frequencies, the resistance of the system is given by the value of R_, from Equation (3). In this case, it is

0.2 Q. Moving from right to left on the DRT plot, the first feature encountered is a large positive peak,
labelled (i). This indicates an RC element. From Equation (2), the area under the peak (2 Q) is the change
in resistance from passing this peak. For an RC circuit, the area under the peak is the value of the resistor.
Reading the exact value of this resistor can be easier on the Nyquist plot when time constants are far
apart, but if the system’s time constants were closer together, the overlap in each time constant’s effects
would make that impossible. The time constant of this RC element is given by the position of the peak.
The peak is located around /= 800 Hz, so the time constant is 7 = 1 / (2zf) = 2x10™*s. After passing this
peak, the total resistance in the system is 2.2 Q. Continuing to lower frequencies on the DRT plot, there is
a much smaller, negative peak (ii), which indicates an RL element. The area between this peak and the
frequency axis is 0.2 Q, which is subtracted from the total resistance, so that the low frequency resistance
is 2 Q. Since the frequency of the peak is 0.31 Hz, the time constant is 0.5 s.

Identifying which physical processes cause these two features requires background knowledge about
the system. But, based only on the DRT, it can be concluded that most of the system’s resistance comes
from a single dominant reaction, while a much smaller process exists with inductive effects.

3.4 Diffusion elements

As noted in Section 2.2, the DRT of diffusion elements is quite complex, and therefore they can often
be easier to identify based on the Nyquist plot instead of the DRT. But the DRT can still be helpful in
separating the diffusion element from other elements in the system. See Figure 6 for the theoretical DRT
of diffusion elements.

If semi-infinite Warburg diffusion exists in the system, it is best handled by adding a semi-infinite
Warburg element to the DRT model (Section 3.2). For finite length Warburg diffusion, there are in theory
an infinite number of peaks in the DRT, becoming smaller and closer at higher frequencies. Figure 12(a)
is an attempt to model these peaks with a numerically calculated DRT. Since the £' norm tends to group
peaks together, ridge regression (only {? norm) is used. A non-negative constraint removes negative
correction peaks. The first peak is large and easy to identify, even with higher regularization weights.
However, only extremely small regularization weights can separate out the second peak, and the
remaining peaks are all lumped together. From Equation (5), the ratio between the time constants of each
peak is given by

T (k+05)

T (k—05)°

The first few values of this sequence are {9, 2.78, 1.96, 1.65, 1.49, ...}. While it is easy to separate
time constants with a ratio of 9, it is nearly impossible for ratios less than 2, especially since the size of
the peaks is also decreasing.
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Gerischer diffusion is also difficult to model. In Figure 12(b), ridge regression and a nonnegative
constraint are used to model Gerischer diffusion numerically. The infinite peak cannot be modeled
exactly, and therefore correction peaks are added to the tail. A nonnegative constraint cannot remove
these peaks because the tail is larger than 0. While smaller regularization weights can produce a higher
peak, more regularization will create a smoother distribution.

In general, diffusion tends to produce non-symmetric DRTs with a tail extending into the high
frequencies. This tail can consist of several individual peaks, as in the finite length Warburg case. For
diffusion, as for any other application, it is useful to compare the DRT to the impedance spectrum, since
both plots can provide complementary information about the system’s response.

a) b)
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Figure 12. DRT of (a) Finite Length Warburg and (b) Gerischer elements, with different
regularization weights. For the FLW, red dashed lines indicate the locations of the § distributions. It is
difficult to separate peaks beyond the first one. For the Gerischer, the difficulty lies in modeling an
infinite peak with a large tail. Ridge regression is used for both examples.
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